A Feature Selection-based Ensemble Method for Arrhythmia Classification

Хэвлэлийн нэр: Journal of Information Processing Systems

Зохиогч:  Н.Эрдэнэтуяа

Хамтран зохиогч:

Хэвлүүлсэн огноо: 2013-03-01

Хуудас дугаар: 31-40

Өгүүллийн хураангуй: In this paper, a novel method is proposed to build an ensemble of classifiers by using a feature selection schema. The feature selection schema identifies the best feature sets that affect the arrhythmia classification. Firstly, a number of feature subsets are extracted by applying the feature selection schema to the original dataset. Then classification models are built by using the each feature subset. Finally, we combine the classification models by adopting a voting approach to form a classification ensemble. The voting approach in our method involves both classification error rate and feature selection rate to calculate the score of the each classifier in the ensemble. In our method, the feature selection rate depends on the extracting order of the feature subsets. In the experiment, we applied our method to arrhythmia dataset and generated three top disjointed feature sets. We then built three classifiers based on the top-three feature subsets and formed the classifier ensemble by using the voting approach. Our method can improve the classification accuracy in high dimensional dataset. The performance of each classifier and the performance of their ensemble were higher than the performance of the classifier that was based on whole feature space of the dataset. The classification performance was improved and a more stable classification model could be constructed with the proposed approach. 

Өгүүллийн төрөл: Мэргэжлийн түвшинд хянагддаг сэтгүүл

Өгүүллийн зэрэглэл: Гадаад

Түлхүүр үг: #Arrhythmia Classification #Feature Selection #Data Mining #Ensemble Method

Өгүүлэл нэмсэн: Н.Эрдэнэтуяа

Монгол Улсын Шинжлэх Ухаан Технологийн Их Сургууль © 2020